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The solution of the kinetic equation for the distribution function of adsorbed gas 
atoms is used to construct the scattering kernel for a nonequilibrium state of the 
surface. 

Existing models of the scattering kernel of a dilute gas on a surface are limited by 
the assumption that the solid is in equilibrium [i, 2]. This assumption does not allow one 
to describe correctly transport processes in the gas due to temperature and pressure gradi- 
ents near the nonequilibrium surface, since the lack of thermodynamic equilibrium in the plane 
of the surface causes an additional flux of gas along the surface (the entrainment effect) 
which can become significant under certain conditions [3, 4]. 

Depending on the energy, the gas atoms [i] can either scatter and remain free, or suffer 
transitions into bound states and then escape from the surface after a certain time interval. 
If the mean collision time of the free gas atoms with the surface is much smaller than the 
relaxation time of the atoms due to phonons of the solid, and the lifetime of atoms in the 
adsorbed state, on the other hand, is much larger than this time, then the adsorbed particles 
can better adjust to the nonequilibrium state of the boundary and give a dominant contribu- 
tion to the entrainment, acquiring a mass velocity due to the temperature gradient on the 
surface. In this case which is characteritic for the scattering of gases that are not too 
light by monocrystals, the distribution function of the desorbed gas atoms will depend on 
this mass velocity and the entrainment effect can be included in a fairly simple way in the 
Nochilla model of the scattering kernel [5]. 

We consider the region of space z > 0 near a plane crystal surface z = 0 with a small 
temperature gradient VT s along the x axis. The space is occupied by a gas of noninteracting 
adsorbed particles with a small temperature gradient 7Tg, which in general is not equal to 
7 T  s �9 

Since it is assumed that the state of the adsorbed gas-solid system is close to equili- 
brium, the steady-state distribution function of adsorbed atoms with respect to the velocity 
v can be represented in the form 

f (v, x, z ) : :  fo (v, x, z)(1 + ~ (v, x, z)), (1)  

where f0 is a local-equilibriumMaxwell-Boltzmann distribution function in the field of the 
surface potentialU(z), and ~ =qgk-ZTg-27Tg +~sk-ZTs-27Ts is a perturbation. 

The nonequilibrium correction qs can be found from the solution of a linearized kinetic 
equation for f, describing the interaction of gas atoms with the collective thermal fluctua- 
tions of the lattice atoms of the solid. Unlike the alternative approach of [4], this method 
is based on the formal theory of scattering and allows one to take into account multiple gas- 
phonon interactions. It leads to a different result for the entrainment effect than that of 
[4]. Our approach is based on the kinetic description of the motion of gas atoms in the field 
of the fluctuating surface potential; a phenomenological variation of this method was used 
in [2, 6]. The quantum kinetic equation ~ntroduced in [3] transforms into the quasiclassical 
Fokker-Planck equation when the surface potential is smoothly varying (%d -z << i): 

a[ a[ I au af _ a ~/A~f-F B~s a[~ (2) 
v~ ~ + vz az m az av~ av~ , --ff~vs } 
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where i, j = x, y, z. Single scattering of particles on the boundaries of the potential well 
will be assumed to be elastic. An inelastic boundary condition for (2) can easily be con- 
structed with the help of scattering theory [i, 4]. 

The coefficients Bij and A i depend on v and z and go to zero when z + ~ and are nonzero 
in a narrow surface layer of width of order d. Bij(N) is a functional of the nonequilibrium 
distribution function of phonons N = N o + AN, where N O is the local-equilibrium Planck func- 
tion, and AN = N~ + N~ + nsk-ZTs-aVTs ) is the perturbation. In the relaxa- 
tion time approximation [7]- - 

0m 

OQ~ 

Neglecting the dependence of f, U, A i, and Bij on z in the adsorbed layer, after lineariz- 
ing (2) and equating terms containing VT s, we obtain an equation for qs for temperatures 
kT s >> ~Vz d-l, where T s = Tg = T: 

0 (Bi,(NO)kTfo 0% ~= 0 (B,/(NO( I + NO)nn) Ofo ~ (3) 
Ov~ m Ors ] Ov~ Ovj ]" 

Equation (3) indicates a diffiusion process in the velocity space of the adsorbed particles 
on account of multiple interactions of the particles with nonequilibrium phonons of the solid 
and will be valid in the case of a smooth surface potential well with specularly reflecting 
sides. 

We seek ~s in the form 

% (v) = �9 (v) v~, v = lv~l. 

It can be shown that if the average speed v of the atoms of the gas is much less than the 
mean speed of sound c in the solid, then Bzz >> Bzx - Bxz >> Bij, i, j = x, y. 
be simplified and reduces to the following equation for ~: 

0~0 mv O0 
- -  = H ( v ) ,  

Ov ~ kT Ov 
l ( m )  2my 

H (v) = B= (N~----5 -~ -~  B= (N~ 0 + m) n,). 

Putting $ = v(m/2kT) I/=, we obtain 

where 

(4) 

Then (3) can 

(s) 

o~ ' 2~ = h CD, ( 6 )  

h(~) ==--2kT H 
m 

Equation (6) has the inhomogeneous solution 

(i) (D --  o .  (D E (~') mg ~g') 
o o 

�9 o (~) = j' ~ '  exp ~j,2 = Edi ~, E (~j)---exp (--~=). 
o 

(7) 

The entrainment velocity of the particles along the surface will be 

1 [ 2kT \1/2 vT (8) 
B r ' 

where B ~ kO/mc 2. 

An analogous formula for u x was obtained in [4] without taking into account the multi ~ 
plicity of the gas~honon interactions, however the resulting value of B is significantly 
different. In [4] ( ~ ) 1 / ~ _ _  

B*,-.,b ~ m  , (9) 
p~c 3 c 
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where b - 10 -2 �9 For solids having the usual dispersion law, equation (9) can be rewritten 
in the form B* ~ 10 -2 mv(Mc) -I and hence for temperatures that are not too high B* - 10 -S 
and B* goes to zero when T + 0. 

Under the same conditions B in (8) is at least an order of magnitude larger. In addi- 
tion, B does not depend on T and M, and unlike B*, it is inversely proportional to m. There- 
fore the treatment of diffusion of adsorbed atoms in velocity space using the kinetic equa- 
tion (2) leads to qualitatively new results for the entrainment effect. 

Let ~ be the adhesion coefficient. That, is, ~ is the fraction of particles incident 
on the surface from a steady flux that are adsorbed. Let R~ ' +v) be the scattering kernel 
for the other particles. Using the fact that the entrainment mass velocity u x acquired by 
the particles in the bound state is conserved upon their desorption, the nonequilibrium scat- 
tering kernel, in the framework of the model discussed here, can be written in the form 

R(v'-~v) := (1--~)R~ + ~-~--~ \ T ]  exp 2kT  ((v~--u~)2~ - v ~  v~) , (10) 

where u x is  given by (8) .  

NOTATION 

z, coordinate perpendicular to the surface; x, coordinate in the plane of the surface; 
Ts, local temperature of the solid; Tg, local temperature of the gas; v, velocity of the gas 
atoms; f, total velocity distribution function of the gas atoms; f0, local-equilibrium gas 
distribution function; ~, perturbation of the gas distribution function; k, Bo!tzmann con- 
stant; %, deBroglie wavelength of a gas atom; U, surface potential; d, characteristic linear 
scale of the variation of U; A i and Bij, friction and diffusion coefficients in v-space; N, 
total phonon distribution function; N c, local-equilibrium phonon distribution function; AN, 
perturbation of the phonon distribution function; ~, relaxation time in the phonon subsystem; 
~, phonon frequency; Qx, x component of the wave vector of a phonon; n, Planck's constant; ~, 
auxiliary perturbation function; the solution of the inhomogeneous differential equation (6); 
~0, solution of the homogeneous differential equation corresponding to (6); v = IVzl, absolute 
value of the z-component of the velocity of gas atoms; $, dimensionless velocity; Ux, mass 
velocity of particles along the x axis; B, dimensionless coeffcient; M and m, masses of atoms 
of the solid and gas, respectively; c, speed of sound in the solid; 0, characteristic vibra- 
tional temperature of surface atoms; mD, Debye frequency; Ps, density of the solid; b, dimen- 
sionless coefficient; 6, adhesion coefficient; R, total scattering kernel; R ~ scattering 
kernel of free particles. 
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